login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244474
4th-largest term in n-th row of Stern's diatomic triangle A002487.
4
2, 4, 10, 17, 29, 47, 79, 128, 208, 337, 546, 883, 1429, 2312, 3741, 6053, 9794, 15847, 25641, 41488, 67129, 108617
OFFSET
3,1
LINKS
Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
FORMULA
G.f.: (-2-2*x-4*x^2-3*x^3-2*x^4-x^5-3*x^6-2*x^7-x^8-x^9-x^10)/(-1+x+x^2) (conjectured) - Jean-François Alcover, Mar 12 2023
MAPLE
A002487 := proc(n, k)
option remember;
if k =0 then
1;
elif k = 2^n-1 then
n+1 ;
elif type(k, 'even') then
procname(n-1, k/2) ;
else
procname(n-1, (k-1)/2)+procname(n-1, (k+1)/2) ;
end if;
end proc:
A244474 := proc(n)
{seq(A002487(n, k), k=0..2^n-1)} ;
sort(%) ;
op(-4, %) ;
end proc:
for n from 3 do
print(A244474(n)) ;
od: # R. J. Mathar, Oct 25 2014
MATHEMATICA
s[n_] := s[n] = Switch[n, 0, 0, 1, 1, _, If[EvenQ[n], s[n/2], s[(n - 1)/2] + s[(n - 1)/2 + 1]]];
T = Table[s[n], {n, 0, 2^25}] // Flatten // SplitBy[#, If[# == 1, 1, 0]&]& // DeleteCases[#, {1}]&;
Union[#][[-4]]& /@ T[[5 ;; ]] (* Jean-François Alcover, Mar 12 2023 *)
PROG
(Python)
from itertools import product
from functools import reduce
def A244474(n): return sorted(set(sum(reduce(lambda x, y:(x[0], x[0]+x[1]) if y else (x[0]+x[1], x[1]), k, (1, 0))) for k in product((False, True), repeat=n)), reverse=True)[3] # Chai Wah Wu, Jun 20 2022
CROSSREFS
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Jul 01 2014
EXTENSIONS
a(24) from Jean-François Alcover, Mar 12 2023
STATUS
approved