OFFSET
0,2
COMMENTS
This is the Molien series for the group of order 128 discussed in A097869 extended by the extra generator diag{1,1,i,i}. This group was not considered in the reference cited.
The first g.f. inserts zeros between each pair of terms; the second g.f. does not. - Colin Barker, Feb 12 2015
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805.
Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
FORMULA
G.f.: (1 + x^2 + 2*x^3 + x^4 + x^5 + x^6 + x^7)/(1 - 2*x + x^2 - 2*x^3 +
4*x^4 - 2*x^5 + x^6 - 2*x^7 + x^8).
G.f.: (1+x)*(1-x+x^2)*(1+x^2+x^3+x^4) / ((1-x)^4*(1+x+x^2)^2). - Colin Barker, Feb 12 2015
MAPLE
m:=50; S:=series((1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020
MATHEMATICA
CoefficientList[Series[(1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2, {x, 0, 50}], x] (* G. C. Greubel, Feb 05 2020 *)
LinearRecurrence[{2, -1, 2, -4, 2, -1, 2, -1}, {1, 2, 4, 10, 17, 27, 45, 66}, 50] (* Harvey P. Dale, Jun 11 2022 *)
PROG
(PARI) Vec((x+1)*(x^2-x+1)*(x^4+x^3+x^2+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Feb 12 2015
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 )); // G. C. Greubel, Feb 05 2020
(Sage)
def A097870_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x^3)*(1+x^2+x^3+x^4)/((1-x)*(1-x^3))^2 ).list()
A097870_list(50) # G. C. Greubel, Feb 05 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 02 2004
STATUS
approved