The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097869 Expansion of g.f.: (1+x^4+x^5+x^9)/((1-x)*(1-x^2)*(1-x^4)^2). 3
 1, 1, 2, 2, 6, 7, 11, 12, 21, 25, 34, 38, 54, 63, 79, 88, 113, 129, 154, 170, 206, 231, 267, 292, 341, 377, 426, 462, 526, 575, 639, 688, 769, 833, 914, 978, 1078, 1159, 1259, 1340, 1461, 1561, 1682, 1782, 1926, 2047, 2191, 2312, 2481, 2625, 2794, 2938, 3134, 3303 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Molien series for group of order 128 acting on joint weight enumerators of a pair of binary self-dual codes is (1+x^8+x^10+x^18)/((1-x^2)*(1-x^4)*(1-x^8)^2). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 F. J. MacWilliams, C. L. Mallows and N. J. A. Sloane, Generalizations of Gleason's theorem on weight enumerators of self-dual codes, IEEE Trans. Inform. Theory, 18 (1972), 794-805; see p. 804, Sect. 5.4.1. Index entries for linear recurrences with constant coefficients, signature (2,-1,0,2,-4,2,0,-1,2,-1). FORMULA G.f.: (1+x^4)*(1-x+x^2-x^3+x^4)/( (1+x)^2*(1+x^2)^2*(1-x)^4 ). - R. J. Mathar, Dec 18 2014 From Greg Dresden, Jun 22 2021: (Start) a(2*n)   = (1/48)*(30 + 18*(-1)^n + 64*n + 12*n^2 + 8*n^3), a(2*n+1) = (1/48)*(36 + 12*(-1)^n + 16*n +  8*n^2)*(1 + n). (End) MAPLE m:=55; S:=series((1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020 MATHEMATICA CoefficientList[Series[(1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2), {x, 0, 55}], x] (* G. C. Greubel, Feb 05 2020 *) LinearRecurrence[{2, -1, 0, 2, -4, 2, 0, -1, 2, -1}, {1, 1, 2, 2, 6, 7, 11, 12, 21, 25}, 60] (* Harvey P. Dale, Jun 19 2021 *) PROG (PARI) Vec( (1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2) +O('x^55) ) \\ G. C. Greubel, Feb 05 2020 (MAGMA) R:=PowerSeriesRing(Integers(), 55); Coefficients(R!( (1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2) )); // G. C. Greubel, Feb 05 2020 (Sage) def A097869_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( (1+x^4)*(1+x^5)/((1-x)*(1-x^2)*(1-x^4)^2) ).list() A097869_list(55) # G. C. Greubel, Feb 05 2020 CROSSREFS Cf. A097870. Sequence in context: A177852 A338837 A079811 * A298079 A295783 A060303 Adjacent sequences:  A097866 A097867 A097868 * A097870 A097871 A097872 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 02 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 06:15 EDT 2021. Contains 346369 sequences. (Running on oeis4.)