login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320350
Expansion of e.g.f. Product_{k>=1} (1 + log(1/(1 - x))^k).
5
1, 1, 3, 20, 148, 1384, 15728, 207696, 3094152, 51423288, 945943512, 19083180192, 418550811600, 9907493349168, 251588827187280, 6820899616891008, 196645361557479552, 6007407711127690752, 193842462200078260224, 6586904673329133618432, 235079477736802622742528, 8790132360155070084076800
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A000009(k)*k!.
From Vaclav Kotesovec, Oct 13 2018: (Start)
a(n) ~ n! * exp(n + Pi*sqrt(n/(3*(exp(1) - 1))) + Pi^2/(24*(exp(1) - 1))) / (4 * 3^(1/4) * n^(3/4) * (exp(1) - 1)^(n + 1/4)).
a(n) ~ sqrt(Pi) * exp(Pi*sqrt(n/(3*(exp(1) - 1))) + Pi^2/(24*(exp(1) - 1))) * n^(n - 1/4) / (2^(3/2) * 3^(1/4) * (exp(1) - 1)^(n + 1/4)).
(End)
MAPLE
seq(n!*coeff(series(mul((1 + log(1/(1 - x))^k), k=1..100), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019
MATHEMATICA
nmax = 21; CoefficientList[Series[Product[(1 + Log[1/(1 - x)]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] PartitionsQ[k] k!, {k, 0, n}], {n, 0, 21}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 11 2018
STATUS
approved