login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320350 Expansion of e.g.f. Product_{k>=1} (1 + log(1/(1 - x))^k). 5
1, 1, 3, 20, 148, 1384, 15728, 207696, 3094152, 51423288, 945943512, 19083180192, 418550811600, 9907493349168, 251588827187280, 6820899616891008, 196645361557479552, 6007407711127690752, 193842462200078260224, 6586904673329133618432, 235079477736802622742528, 8790132360155070084076800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..21.

FORMULA

a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A000009(k)*k!.

From Vaclav Kotesovec, Oct 13 2018: (Start)

a(n) ~ n! * exp(n + Pi*sqrt(n/(3*(exp(1) - 1))) + Pi^2/(24*(exp(1) - 1))) / (4 * 3^(1/4) * n^(3/4) * (exp(1) - 1)^(n + 1/4)).

a(n) ~ sqrt(Pi) * exp(Pi*sqrt(n/(3*(exp(1) - 1))) + Pi^2/(24*(exp(1) - 1))) * n^(n - 1/4) / (2^(3/2) * 3^(1/4) * (exp(1) - 1)^(n + 1/4)).

(End)

MAPLE

seq(n!*coeff(series(mul((1 + log(1/(1 - x))^k), k=1..100), x=0, 22), x, n), n=0..21); # Paolo P. Lava, Jan 09 2019

MATHEMATICA

nmax = 21; CoefficientList[Series[Product[(1 + Log[1/(1 - x)]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

Table[Sum[Abs[StirlingS1[n, k]] PartitionsQ[k] k!, {k, 0, n}], {n, 0, 21}]

CROSSREFS

Cf. A000009, A048994, A088311, A298905, A305550, A320349.

Sequence in context: A074569 A026303 A154627 * A091172 A091168 A126596

Adjacent sequences:  A320347 A320348 A320349 * A320351 A320352 A320353

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Oct 11 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 20:38 EST 2019. Contains 329909 sequences. (Running on oeis4.)