login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of sequence of fractions with e.g.f. sqrt(1+x)/(1-x)^2.
1

%I #26 Feb 08 2021 07:15:22

%S 1,5,31,255,2577,31245,439695,7072695,127699425,2562270165,

%T 56484554175,1358576240175,35374065613425,992016072172125,

%U 29792674421484975,954480422711190375,32479589325536978625,1170329273010701929125,44502357662442514209375,1781390379962467540641375

%N Numerators of sequence of fractions with e.g.f. sqrt(1+x)/(1-x)^2.

%C Denominators are successive powers of 2.

%H G. C. Greubel, <a href="/A126121/b126121.txt">Table of n, a(n) for n = 0..400</a>

%F E.g.f.: 1/G(0) where G(k) = 1 - 4*x/(1 + x/(1 - x - (2*k+1)/( 2*k+1 - 4*(k+1)*x/G(k+1)))); (continued fraction, 3rd kind, 4-step). - _Sergei N. Gladkovskii_, Jul 28 2012

%F From _Benedict W. J. Irwin_, May 19 2016: (Start)

%F E.g.f.: sqrt(1+2*x)/(1-2*x)^2.

%F a(n) = (-1)^(n+1)*2^(n-1)*(n-3/2)!*2F1(2,-n;(3/2)-n;-1)/sqrt(Pi).

%F (End)

%F D-finite with recurrence a(n) -5*a(n-1) -2*(2*n-1)*(n-1)*a(n-2)=0. - _R. J. Mathar_, Feb 08 2021

%e The fractions are 1, 5/2, 31/4, 255/8, 2577/16, 31245/32, 439695/64, ...

%t With[{nn=20},Numerator[CoefficientList[Series[Sqrt[1+x]/(1-x)^2,{x, 0, nn}], x] Range[0,nn]!]] (* _Harvey P. Dale_, Jan 29 2016 *)

%o (PARI) x='x+O('x^25); Vec(serlaplace(sqrt(1+2*x)/(1-2*x)^2)) \\ _G. C. Greubel_, May 25 2017

%Y Cf. A003148, A001174, A126115, A126119.

%K nonn,frac

%O 0,2

%A _N. J. A. Sloane_, Mar 22 2007