login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266235
Primes representable as f(f(f(...f(p)...))) where p is a prime and f(x) = x^2 + 1.
1
5, 101, 677, 28901, 3422501, 4884101, 260176901, 4784488901, 5887492901, 7370222501, 12898144901, 14498568101, 24840912101, 38514062501, 47563248101, 56249608901, 64014060101, 110842384901, 123657722501, 135755402501, 205145584901, 279343960901, 288680544101
OFFSET
1,1
COMMENTS
For p>2, f(x) is applied an even number of times, twice at least.
EXAMPLE
a(2) = f(f(3)) = (3^2 + 1)^2 + 1 = 101.
a(3) = f(f(5)) = (5^2 + 1)^2 + 1 = 677.
MATHEMATICA
Take[Union@ Flatten[Table[Nest[#^2 + 1 &, Prime@ n, #], {n, 150}] & /@ Range@ 6] /. n_ /; CompositeQ@ n -> Nothing, 23] (* Michael De Vlieger, Jan 06 2016 *)
PROG
(Python)
from sympy import isprime
a=[]
TOP=1000000
for p in range(TOP):
if isprime(p):
q=p
while q<TOP:
q = q*q+1
if isprime(q):
a.append(q)
print(sorted(set(a)))
CROSSREFS
Sequence in context: A081220 A210362 A041187 * A266452 A354332 A074790
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Dec 25 2015
STATUS
approved