This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266236 Least m > 0 such that m*n^3 + 1 is a cube. 2
 1, 7, 91, 37, 4291, 16003, 1801, 17, 263683, 19927, 1003003, 1775557, 111169, 506115, 17145, 423001, 16789507, 24152311, 1261657, 3266062, 64024003, 5080, 113411851, 148072393, 7082497, 244187503, 1922636, 14355469, 3132736, 594896491, 27009001, 8341522, 1073840131 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Least m>0 for which x^3 - m*y^3 = 1 has a solution with y = n. LINKS Robert G. Wilson v, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A076947(n^3). - Robert Israel, Dec 25 2015 EXAMPLE 17*7^3+1 = 18^3, and 17 is the smallest positive m such that m*7^3+1 is a cube, so a(7)=17. MATHEMATICA f[n_] := Block[{x = 2, n3 = n^3}, While[ Mod[x^3 - 1, n3] != 0, x++]; (x^3 - 1)/n3]; f[0] = 1; Array[f, 34, 0] (* Robert G. Wilson v, Mar 24 2016 *) PROG (PARI) a(n) = {my(m = 1, cn = n^3); while (!ispower(m*cn + 1, 3), m++); m; } \\ Michel Marcus, Feb 09 2016 CROSSREFS Cf. A000578, A035096, A067872. Sequence in context: A007820 A306137 A226624 * A123694 A319978 A085026 Adjacent sequences:  A266233 A266234 A266235 * A266237 A266238 A266239 KEYWORD nonn AUTHOR Alex Ratushnyak, Dec 25 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 22:38 EDT 2019. Contains 325278 sequences. (Running on oeis4.)