login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266239
a(n) is the smallest k such that the following are four primes: prime(n)*k-1, prime(n)*k+1, prime(n)*k^2-1, prime(n)*k^2+1. Or -1 if no such k exists.
0
3, 2, 6, 66, 300, 24, 3744, 27000, 6, 1080, 960, 90, 30, 366, 9204, 8154, 1170, 840, 330, 6090, 84, 27720, 324, 90, 186, 4740, 2856, 6, 24270, 936, 5220, 1560, 6, 1500, 510, 120, 930, 3270, 30, 8520, 29700, 1200, 23310, 1056, 3540, 90, 3420, 2370, 9654, 83040, 2610, 9270, 2610
OFFSET
1,1
COMMENTS
Conjecture: a(n)>1.
EXAMPLE
a(1)=3 because the following are four primes: 2*3-1, 2*3+1, 2*9-1, 2*9+1.
PROG
(Python)
from sympy import isprime
TOP=10**9
for p in range(2, 333):
if isprime(p):
failed = True
for x in range(1, TOP):
if isprime(p*x+1) and isprime(p*x-1) and isprime(p*x*x-1) and isprime(p*x*x+1):
print(x, end=', ')
failed = False
break
if failed: print(-1, end=', ')
(PARI) a(n) = {k = 1; p = prime(n); while (! (isprime(p*k-1) && isprime(p*k+1) && isprime(p*k^2-1) && isprime(p*k^2+1)), k++); k; } \\ Michel Marcus, Dec 27 2015
CROSSREFS
Sequence in context: A025240 A137602 A086550 * A018864 A271610 A019951
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Dec 25 2015
STATUS
approved