login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210362
Prime numbers p such that x^2 + x + p produces primes for x = 0..3 but not x = 4.
7
5, 101, 227, 1091, 1481, 1487, 3917, 4127, 4787, 8231, 9461, 10331, 11777, 12107, 14627, 16061, 20747, 25577, 27737, 29021, 32297, 33347, 35531, 35591, 36467, 38447, 39227, 41177, 42461, 44267, 44531, 49031, 59441, 69191, 77237, 79811, 80777, 93251, 93491
OFFSET
1,1
COMMENTS
The first term is A164926(4).
MATHEMATICA
lookfor = 4; t = {}; n = 0; While[Length[t] < 50, n++; c = Prime[n]; i = 1; While[PrimeQ[i^2 + i + c], i++]; If[i == lookfor, AppendTo[t, c]]]; t
Select[Prime[Range[10000]], AllTrue[#+{2, 6, 12}, PrimeQ]&&!PrimeQ[#+20]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 26 2015 *)
Select[Prime[Range[10000]], Boole[PrimeQ[#+{2, 6, 12, 20}]]=={1, 1, 1, 0}&] (* Harvey P. Dale, Nov 17 2024 *)
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 05 2012
STATUS
approved