login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A119556
Primes in the sequence f(n+1) = f(n)+((-1)^(n+1))*n!, with f(1)=0.
1
5, 101, 4421, 1226280710981, 115578717622022981, 32656499591185747972776747396512425885838364422981, 136372385605079432248118270297843987319730859689490659519593045108637838364422981
OFFSET
1,1
COMMENTS
The tenth term has 1579 digits. - Harvey P. Dale, Sep 10 2018
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 160.
LINKS
EXAMPLE
f(0)=0, f(1) = 0+((-1)^2)*1! = 1, f(2) = 1+((-1)^3)*2! = -1, f(3) = -1+((-1)^4)*3! = 5, which is prime, so 5 is the first term of the sequence.
MAPLE
P:=proc(n) local i, j; j:=0; for i from 1 by 1 to n do j:=j+((-1)^(i+1))*i!; if isprime(j) then print(i); fi; od; end: P(100);
MATHEMATICA
nxt[{n_, a_}]:={n+1, a+(-1)^(n+1) n!}; Select[NestList[nxt, {1, 0}, 205][[All, 2]], #>0 && PrimeQ[#]&] (* Harvey P. Dale, Sep 10 2018 *)
CROSSREFS
Sequence in context: A354332 A074790 A009757 * A009765 A113073 A349045
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset changed to 1 (this is a list) by Bruno Berselli, Feb 16 2012
Definition corrected by Harvey P. Dale, Sep 10 2018
STATUS
approved