login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119555
Primes in the sequence f(n) = f(n-1)+((-1)^n)*n!, with f(0)=0.
0
19, 619, 35899, 3301819, 468544077492065936712052044718939948687543330546977719976017418129955876663406131164377030450551575840099843957105136480237871017419158043635450756712088769133544426722033165168878328322819566779381528981882285541609256481166622331374702000809600061055686236758821446539362161635577019
OFFSET
1,1
COMMENTS
f(n) = (-1)^n*A005165(n). The primes are those terms in A071828 which correspond to even n values in A001272: n = 4, 6, 8, 10, 160, 4998, 9158, 11164 (the last three are only probable primes). 3612703 divides f(n) for n >= 3612702, so the sequence is finite. - Jens Kruse Andersen, Jul 04 2014
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 160.
EXAMPLE
f(0)=0, f(1) = 0+((-1)^1)*1! = -1, f(2) = -1+((-1)^2)*2! = 1, f(3) = 1+((-1)^3)*3! = -5, f(4) = -5+((-1)^4)*4! = 19, which is prime, so 19 is the first term of the sequence.
MAPLE
P:=proc(n) local i, j; j:=0; for i from 1 by 1 to n do j:=j+((-1)^i)*i!; if isprime(j) then print(j); fi; od; end: P(100);
MATHEMATICA
nxt[{n_, a_}]:={n+1, a+(-1)^(n+1) (n+1)!}; Select[NestList[nxt, {0, 0}, 200][[All, 2]], #>0&&PrimeQ[#]&] (* Harvey P. Dale, Jan 22 2017 *)
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
EXTENSIONS
Offset changed to 1 (this is a list) from Bruno Berselli, Feb 16 2012
Formula in name corrected by Jens Kruse Andersen, Jul 04 2014
STATUS
approved