OFFSET
1,1
COMMENTS
f(n) = (-1)^n*A005165(n). The primes are those terms in A071828 which correspond to even n values in A001272: n = 4, 6, 8, 10, 160, 4998, 9158, 11164 (the last three are only probable primes). 3612703 divides f(n) for n >= 3612702, so the sequence is finite. - Jens Kruse Andersen, Jul 04 2014
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 160.
EXAMPLE
f(0)=0, f(1) = 0+((-1)^1)*1! = -1, f(2) = -1+((-1)^2)*2! = 1, f(3) = 1+((-1)^3)*3! = -5, f(4) = -5+((-1)^4)*4! = 19, which is prime, so 19 is the first term of the sequence.
MAPLE
P:=proc(n) local i, j; j:=0; for i from 1 by 1 to n do j:=j+((-1)^i)*i!; if isprime(j) then print(j); fi; od; end: P(100);
MATHEMATICA
nxt[{n_, a_}]:={n+1, a+(-1)^(n+1) (n+1)!}; Select[NestList[nxt, {0, 0}, 200][[All, 2]], #>0&&PrimeQ[#]&] (* Harvey P. Dale, Jan 22 2017 *)
CROSSREFS
KEYWORD
nonn,fini
AUTHOR
Paolo P. Lava and Giorgio Balzarotti, May 30 2006
EXTENSIONS
Offset changed to 1 (this is a list) from Bruno Berselli, Feb 16 2012
Formula in name corrected by Jens Kruse Andersen, Jul 04 2014
STATUS
approved