login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes in the sequence f(n) = f(n-1)+((-1)^n)*n!, with f(0)=0.
0

%I #15 Jan 22 2017 10:13:04

%S 19,619,35899,3301819,

%T 468544077492065936712052044718939948687543330546977719976017418129955876663406131164377030450551575840099843957105136480237871017419158043635450756712088769133544426722033165168878328322819566779381528981882285541609256481166622331374702000809600061055686236758821446539362161635577019

%N Primes in the sequence f(n) = f(n-1)+((-1)^n)*n!, with f(0)=0.

%C f(n) = (-1)^n*A005165(n). The primes are those terms in A071828 which correspond to even n values in A001272: n = 4, 6, 8, 10, 160, 4998, 9158, 11164 (the last three are only probable primes). 3612703 divides f(n) for n >= 3612702, so the sequence is finite. - _Jens Kruse Andersen_, Jul 04 2014

%D G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 160.

%e f(0)=0, f(1) = 0+((-1)^1)*1! = -1, f(2) = -1+((-1)^2)*2! = 1, f(3) = 1+((-1)^3)*3! = -5, f(4) = -5+((-1)^4)*4! = 19, which is prime, so 19 is the first term of the sequence.

%p P:=proc(n) local i,j; j:=0; for i from 1 by 1 to n do j:=j+((-1)^i)*i!; if isprime(j) then print(j); fi; od; end: P(100);

%t nxt[{n_,a_}]:={n+1,a+(-1)^(n+1) (n+1)!}; Select[NestList[nxt,{0,0},200][[All,2]],#>0&&PrimeQ[#]&] (* _Harvey P. Dale_, Jan 22 2017 *)

%Y Cf. A005165, A071828, A001272.

%K nonn,fini

%O 1,1

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, May 30 2006

%E Offset changed to 1 (this is a list) from _Bruno Berselli_, Feb 16 2012

%E Formula in name corrected by _Jens Kruse Andersen_, Jul 04 2014