|
|
A074793
|
|
Sum of prime powers less than or equal to n.
|
|
2
|
|
|
0, 2, 5, 9, 14, 14, 21, 29, 38, 38, 49, 49, 62, 62, 62, 78, 95, 95, 114, 114, 114, 114, 137, 137, 162, 162, 189, 189, 218, 218, 249, 281, 281, 281, 281, 281, 318, 318, 318, 318, 359, 359, 402, 402, 402, 402, 449, 449, 498, 498, 498, 498, 551, 551, 551, 551, 551
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Is a(n) asymptotic to c*n^2/log(n) with c=0.55...?
a(n) = Sum_{k=1..floor(log_2(n))} Sum_{p prime <= n^(1/k)} p^k.
a(n) = A034387(n) + A081738(A000196(n)) + Sum_{p prime <= n^(1/3)} ((p^(floor(log_p(n))+1) - 1)/(p-1) - p^2 - p - 1). (End)
|
|
EXAMPLE
|
a(10)=38 because 2,3,4,5,7,8,9 are the prime powers less than or equal to 10 and 2+3+4+5+7+8+9 = 38.
|
|
MATHEMATICA
|
Accumulate[Table[If[PrimePowerQ[n], n, 0], {n, 60}]] (* Harvey P. Dale, Oct 04 2019 *)
|
|
PROG
|
(PARI) a(n)=sum(k=1, n, k*if(omega(k)-1, 0, 1))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|