login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319814
Number of partitions of n into exactly four positive triangular numbers.
6
1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 1, 3, 2, 4, 2, 2, 3, 3, 3, 2, 4, 3, 5, 3, 2, 5, 4, 4, 3, 5, 4, 4, 5, 4, 5, 5, 4, 6, 5, 5, 6, 5, 5, 6, 7, 3, 5, 9, 5, 7, 5, 8, 7, 7, 4, 7, 9, 7, 8, 5, 7, 8, 10, 6, 6, 10, 7, 10, 7, 8, 9, 8, 8, 7, 13, 7, 10, 11
OFFSET
4,10
LINKS
FORMULA
a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^A000217(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0,
`if`(issqr(8*n+1), n, h(n-1)))
end:
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(
k>n or i*k<n, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
end:
a:= n-> b(n, h(n), 4):
seq(a(n), n=4..120);
MATHEMATICA
h[n_] := h[n] = If[n<1, 0, If[IntegerQ@Sqrt[8n + 1], n, h[n - 1]]];
b[n_, i_, k_] := b[n, i, k] = If[n==0, If[k==0, 1, 0], If[k>n || i k < n, 0, b[n, h[i - 1], k] + b[n - i, h[Min[n - i, i]], k - 1]]];
a[n_] := b[n, h[n], 4];
a /@ Range[4, 120] (* Jean-François Alcover, Dec 13 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A319797.
Cf. A000217.
Sequence in context: A228570 A173305 A233867 * A220272 A298917 A322530
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 28 2018
STATUS
approved