login
A319814
Number of partitions of n into exactly four positive triangular numbers.
6
1, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2, 1, 3, 2, 4, 2, 2, 3, 3, 3, 2, 4, 3, 5, 3, 2, 5, 4, 4, 3, 5, 4, 4, 5, 4, 5, 5, 4, 6, 5, 5, 6, 5, 5, 6, 7, 3, 5, 9, 5, 7, 5, 8, 7, 7, 4, 7, 9, 7, 8, 5, 7, 8, 10, 6, 6, 10, 7, 10, 7, 8, 9, 8, 8, 7, 13, 7, 10, 11
OFFSET
4,10
LINKS
FORMULA
a(n) = [x^n y^4] 1/Product_{j>=1} (1-y*x^A000217(j)).
MAPLE
h:= proc(n) option remember; `if`(n<1, 0,
`if`(issqr(8*n+1), n, h(n-1)))
end:
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(
k>n or i*k<n, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
end:
a:= n-> b(n, h(n), 4):
seq(a(n), n=4..120);
MATHEMATICA
h[n_] := h[n] = If[n<1, 0, If[IntegerQ@Sqrt[8n + 1], n, h[n - 1]]];
b[n_, i_, k_] := b[n, i, k] = If[n==0, If[k==0, 1, 0], If[k>n || i k < n, 0, b[n, h[i - 1], k] + b[n - i, h[Min[n - i, i]], k - 1]]];
a[n_] := b[n, h[n], 4];
a /@ Range[4, 120] (* Jean-François Alcover, Dec 13 2020, after Alois P. Heinz *)
CROSSREFS
Column k=4 of A319797.
Cf. A000217.
Sequence in context: A228570 A173305 A233867 * A220272 A298917 A322530
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 28 2018
STATUS
approved