login
A366562
a(n) = Sum_{k=1..n} A366561(n,k)*A023900(k)/n.
2
1, 0, -2, 0, -4, 0, -6, 0, -6, 0, -10, 0, -12, 0, 8, 0, -16, 0, -18, 0, 12, 0, -22, 0, -20, 0, -18, 0, -28, 0, -30, 0, 20, 0, 24, 0, -36, 0, 24, 0, -40, 0, -42, 0, 24, 0, -46, 0, -42, 0, 32, 0, -52, 0, 40, 0, 36, 0, -58, 0, -60, 0, 36, 0, 48, 0, -66, 0, 44, 0, -70, 0, -72, 0
OFFSET
1,3
FORMULA
a(n) = Sum_{k=1..n} A366561(n,k)*A023900(k)/n.
Conjecture: a(n) = [Mod[n, 2] = 1]*A000010(n)*(-1)^A001221(n).
MATHEMATICA
nn = 74; f = x^2 - y^2; g[n_] := DivisorSum[n, MoebiusMu[#] # &]; Table[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0]*g[k]/n, {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]
CROSSREFS
KEYWORD
sign
AUTHOR
Mats Granvik, Oct 13 2023
STATUS
approved