login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200144
The number of multinomial coefficients, based on a set of partitions of n into m positions, divisible by m entirely.
0
1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 64, 100, 121, 167, 213, 296, 354, 489, 594, 776, 964, 1254, 1511, 1951, 2378, 2986, 3643, 4564, 5483, 6841, 8245, 10099, 12190, 14862, 17783, 21636, 25849, 31184
OFFSET
1,3
COMMENTS
If n is prime, then the number of multinomial coefficients, based on a set of partitions of n at position m, divided by m entirely, less 1 than the number of partitions of numbers for all m.
EXAMPLE
n=7;
Set of partitions of n into m=4 parts
[1,1,1,4]
[1,1,2,3]
[1,2,2,2]
number of different parts
[3,1]
[2,1,1]
[1,3]
Multinomial coefficient, divisible by m
4!/(4*(1!*3!))=1
4!/(4*(2!*1!*1!))=2
4!/(4*(1!*3!))=1
Set of partitions of n into m=7 parts
[1,1,1,1,1,1,1]
number of different parts
[7]
Multinomial coefficient, divisible by m
7!/(7*(7!))=1/7
PROG
(Maxima)
/* count number of partitions of n into m parts */
b(n, m):=if n<m then 0 else if m=1 then 1 else b(n-1, m-1)+b(n-m, m);
/* unranking partitions(n, m) , num - numbers partitions of lexicographic order */
array(pa, 100);
gen_partitions(n, m, num, pos):= if n<m then return else
if m=1 then pa[pos]:n else
if num<b(n-1, m-1) then (pa[pos]:1, gen_partitions(n-1, m-1, num, pos+1)) else
if num<b(n-m, m)+b(n-1, m-1) then
(gen_partitions(n-m, m, num-b(n-1, m-1), pos),
for i:0 thru m-1 do pa[i+pos]:pa[i+pos]+1);
FindPo(pa, n, po):=block([k, s] , k:0, po[k]:1, s:pa[0], for i:1 thru n-1 do (if pa[i]=s then po[k]:po[k]+1 else (k:k+1, s:pa[i], po[k]:1)), return (k));
Tep(n, m):=block([d], d:0, for i:0 thru b(n, m)-1 do (gen_partitions(n, m, i, 0), k:FindPo(pa, m, po),
if(denom((m-1)!/prod(po[j]!, j, 0, k))=1) then d:d+1), return(d));
makelist(sum(Tep(n, m), m, 1, n), n, 1, 20);
CROSSREFS
Sequence in context: A322367 A319811 A000837 * A056498 A325093 A018652
KEYWORD
nonn
AUTHOR
Dmitry Kruchinin, Nov 11 2011
STATUS
approved