OFFSET
0,4
COMMENTS
An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).
EXAMPLE
The a(3) = 2 through a(9) = 27 disconnected integer partitions:
(21) (31) (32) (51) (43) (53) (54)
(111) (211) (41) (321) (52) (71) (72)
(1111) (221) (411) (61) (332) (81)
(311) (2211) (322) (431) (432)
(2111) (3111) (331) (521) (441)
(11111) (21111) (421) (611) (522)
(111111) (511) (3221) (531)
(2221) (3311) (621)
(3211) (4211) (711)
(4111) (5111) (3222)
(22111) (22211) (3321)
(31111) (32111) (4221)
(211111) (41111) (4311)
(1111111) (221111) (5211)
(311111) (6111)
(2111111) (22221)
(11111111) (32211)
(33111)
(42111)
(51111)
(222111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
(111111111)
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n], Length[zsm[#]]!=1&]], {n, 20}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 04 2018
STATUS
approved