login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331179
Number of values of k, 1 <= k <= n, with A173557(k) = A173557(n), where A173557(n) = Product_{p-1 | p is prime and divisor of n}.
2
1, 2, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 5, 1, 5, 1, 3, 2, 2, 1, 6, 4, 3, 7, 3, 1, 2, 1, 6, 1, 2, 1, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 9, 4, 6, 1, 5, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 6, 7, 1, 2, 1, 3, 1, 3, 1, 11, 1, 3, 5, 3, 2, 4, 1, 7, 12, 3, 1, 7, 1, 2, 1, 4, 1, 6, 2, 3, 3, 2, 3, 13, 1, 6, 3, 8, 1, 2, 1, 8, 2
OFFSET
1,2
COMMENTS
Ordinal transform of A173557.
LINKS
MATHEMATICA
A173557[n_] := If[n == 1, 1, Times @@ (FactorInteger[n][[All, 1]] - 1)];
Module[{b}, b[_] = 0;
a[n_] := With[{t = A173557[n]}, b[t] = b[t] + 1]];
Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
v331179 = ordinal_transform(vector(up_to, n, A173557(n)));
A331179(n) = v331179[n];
CROSSREFS
Cf. A173557.
Cf. also A081373, A331175, A331178.
Sequence in context: A324826 A277892 A214743 * A026100 A059127 A319494
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 11 2020
STATUS
approved