Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Mar 16 2019 21:45:53
%S 1,2,1,3,1,2,1,4,2,3,1,4,1,2,1,5,1,3,1,5,1,3,1,6,2,3,3,4,1,4,1,6,1,3,
%T 1,6,1,2,2,7,1,2,1,5,3,3,1,8,2,4,2,5,1,4,1,6,2,2,1,8,1,3,3,7,1,4,1,5,
%U 1,3,1,9,1,3,2,4,1,5,1,9,4,3,1,6,2,3,2,7,1,6,1,5,1,3,2,10,1,4,3,7,1,4,1,7,2
%N Number of divisors d of n such that A323243(d) is either 0 or 1 (mod 4).
%H Antti Karttunen, <a href="/A324826/b324826.txt">Table of n, a(n) for n = 1..10000</a> (based on Hans Havermann's factorization of A156552)
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = A000005(n) - A324827(n).
%F a(p) = 1 for all odd primes p.
%o (PARI) A324826(n) = sumdiv(n,d,((A323243(d)%4)<2));
%Y Cf. A000005, A324825, A324827, A324830, A324831, A324832.
%K nonn
%O 1,2
%A _Antti Karttunen_, Mar 16 2019