login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302023
Permutation of natural numbers mapping ordinary factorization to "Fermi-Dirac factorization": a(1) = 1, a(2n) = 2*A300841(a(n)), a(A003961(n)) = A300841(a(n)).
9
1, 2, 3, 6, 4, 8, 5, 24, 12, 10, 7, 30, 9, 14, 15, 120, 11, 40, 13, 42, 21, 18, 16, 168, 20, 22, 60, 54, 17, 56, 19, 840, 27, 26, 28, 210, 23, 32, 33, 216, 25, 72, 29, 66, 84, 34, 31, 1080, 35, 70, 39, 78, 37, 280, 36, 264, 48, 38, 41, 270, 43, 46, 108, 7560, 44, 88, 47, 96, 51, 90, 49, 1512, 53, 50, 105, 102, 45, 104, 59, 1320
OFFSET
1,2
COMMENTS
See comments and additional formulas in A302024.
FORMULA
a(1) = 1; a(2n) = 2*A300841(a(n)), a(2n+1) = A300841(a(A064989(2n+1))). [corrected Jun 10 2018]
a(n) = A052330(A156552(n)).
a(A000040(n)) = A050376(n).
PROG
(PARI)
up_to = 32768;
v050376 = vector(up_to);
A050376(n) = v050376[n];
ispow2(n) = (n && !bitand(n, n-1));
i = 0; for(n=1, oo, if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to, break));
A052330(n) = { my(p=1, i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
A052331(n) = { my(s=0, e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
A300841(n) = A052330(2*A052331(n));
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A302023(n) = if(1==n, n, if(!(n%2), 2*A300841(A302023(n/2)), A300841(A302023(A064989(n)))));
CROSSREFS
Cf. A302024 (inverse).
Cf. also A091202, A302025.
Sequence in context: A372132 A132169 A273666 * A112975 A257218 A349702
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 15 2018
STATUS
approved