login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permutation of natural numbers mapping ordinary factorization to "Fermi-Dirac factorization": a(1) = 1, a(2n) = 2*A300841(a(n)), a(A003961(n)) = A300841(a(n)).
9

%I #16 Jun 10 2018 18:02:20

%S 1,2,3,6,4,8,5,24,12,10,7,30,9,14,15,120,11,40,13,42,21,18,16,168,20,

%T 22,60,54,17,56,19,840,27,26,28,210,23,32,33,216,25,72,29,66,84,34,31,

%U 1080,35,70,39,78,37,280,36,264,48,38,41,270,43,46,108,7560,44,88,47,96,51,90,49,1512,53,50,105,102,45,104,59,1320

%N Permutation of natural numbers mapping ordinary factorization to "Fermi-Dirac factorization": a(1) = 1, a(2n) = 2*A300841(a(n)), a(A003961(n)) = A300841(a(n)).

%C See comments and additional formulas in A302024.

%H Antti Karttunen, <a href="/A302023/b302023.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%F a(1) = 1; a(2n) = 2*A300841(a(n)), a(2n+1) = A300841(a(A064989(2n+1))). [corrected Jun 10 2018]

%F a(n) = A052330(A156552(n)).

%F a(A000040(n)) = A050376(n).

%o (PARI)

%o up_to = 32768;

%o v050376 = vector(up_to);

%o A050376(n) = v050376[n];

%o ispow2(n) = (n && !bitand(n,n-1));

%o i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to,break));

%o A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };

%o A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };

%o A300841(n) = A052330(2*A052331(n));

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A302023(n) = if(1==n,n,if(!(n%2),2*A300841(A302023(n/2)),A300841(A302023(A064989(n)))));

%Y Cf. A302024 (inverse).

%Y Cf. A050376, A052330, A064989, A156552, A300841.

%Y Cf. also A091202, A302025.

%K nonn

%O 1,2

%A _Antti Karttunen_, Apr 15 2018