OFFSET
0,4
COMMENTS
Gutman, Furtula, and Petrović, define the terminal Wiener index as the sum of the distances between all pairs of leaves (pendant vertices, degree 1) in a tree (or graph).
They determine the maximum terminal Wiener index T(n,k), and construct the trees which attain this maximum.
The triangle rows are all possible n,k combinations, which means k=n in rows n=0..2, and k=2..n-1 in rows n>=3.
LINKS
Kevin Ryde, Table of n, a(n) for n = 0..7023 (rows 0..120)
Ivan Gutman, Boris Furtula and Miroslav Petrović, Terminal Wiener Index, Journal of Mathematical Chemistry, volume 46, 2009, pages 522-531.
FORMULA
T(n,k) = k*(k-1) + (n-1-k)*floor(k/2)*ceiling(k/2). [Gutman, Furtula, Petrović, theorem 4]
G.f.: x^2*y^2*( 1 + x*(1 + (1-x)*(1+2*x*y)) / ((1-x)^2 * (1+x*y) * (1-x*y)^3) ).
EXAMPLE
Triangle begins:
k=0 1 2 3 4 5 6 7 8
n=0; 0,
n=1; 0,
n=2; 1,
n=3; 2,
n=4; 3, 6,
n=5; 4, 8, 12,
n=6; 5, 10, 16, 20,
n=7; 6, 12, 20, 26, 30,
n=8; 7, 14, 24, 32, 39, 42,
n=9; 8, 16, 28, 38, 48, 54, 56,
PROG
(PARI) T(n, k) = (((n-k+3)*k - 4)*k + if(k%2, k-n+1))>>2;
CROSSREFS
KEYWORD
easy,nonn,tabf
AUTHOR
Kevin Ryde, Nov 26 2021
STATUS
approved