login
A289055
Triangle read by rows: T(n,k) = (k+1)*A028815(n) for 0 <= k <= n.
1
2, 3, 6, 4, 8, 12, 6, 12, 18, 24, 8, 16, 24, 32, 40, 12, 24, 36, 48, 60, 72, 14, 28, 42, 56, 70, 84, 98, 18, 36, 54, 72, 90, 108, 126, 144, 20, 40, 60, 80, 100, 120, 140, 160, 180, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330
OFFSET
0,1
FORMULA
a(n) = A289108(n) + 1.
EXAMPLE
Triangle begins:
2;
3, 6;
4, 8, 12;
6, 12, 18, 24;
8, 16, 24, 32, 40;
12, 24, 36, 48, 60, 72;
14, 28, 42, 56, 70, 84, 98;
18, 36, 54, 72, 90, 108, 126, 144;
20, 40, 60, 80, 100, 120, 140, 160, 180;
...
MATHEMATICA
Join[{2}, t[n_, k_] := (k + 1) (Prime[n] + 1); Table[t[n, k], {n, 10}, {k, 0, n}] //Flatten]
PROG
(Magma) /* As triangle (here NthPrime(0)=1) */ [[(k+1)*(NthPrime(n)+1): k in [0..n]]: n in [0.. 15]];
(SageMath)
def A289055(n, k): return 2 if n==0 else (k+1)*(nth_prime(n) +1)
flatten([[A289055(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 05 2024
CROSSREFS
Cf. A289108.
Columns k: A028815 (k=0), A089241 (k=1), A247159 (k=2), A273801 (k=3).
Sequence in context: A112975 A257218 A349702 * A109890 A370046 A373326
KEYWORD
nonn,tabl,less
AUTHOR
Vincenzo Librandi, Sep 02 2017
STATUS
approved