login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289055
Triangle read by rows: T(n,k) = (k+1)*A028815(n) for 0 <= k <= n.
1
2, 3, 6, 4, 8, 12, 6, 12, 18, 24, 8, 16, 24, 32, 40, 12, 24, 36, 48, 60, 72, 14, 28, 42, 56, 70, 84, 98, 18, 36, 54, 72, 90, 108, 126, 144, 20, 40, 60, 80, 100, 120, 140, 160, 180, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330
OFFSET
0,1
FORMULA
a(n) = A289108(n) + 1.
EXAMPLE
Triangle begins:
2;
3, 6;
4, 8, 12;
6, 12, 18, 24;
8, 16, 24, 32, 40;
12, 24, 36, 48, 60, 72;
14, 28, 42, 56, 70, 84, 98;
18, 36, 54, 72, 90, 108, 126, 144;
20, 40, 60, 80, 100, 120, 140, 160, 180;
...
MATHEMATICA
Join[{2}, t[n_, k_] := (k + 1) (Prime[n] + 1); Table[t[n, k], {n, 10}, {k, 0, n}] //Flatten]
PROG
(Magma) /* As triangle (here NthPrime(0)=1) */ [[(k+1)*(NthPrime(n)+1): k in [0..n]]: n in [0.. 15]];
(SageMath)
def A289055(n, k): return 2 if n==0 else (k+1)*(nth_prime(n) +1)
flatten([[A289055(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 05 2024
CROSSREFS
Cf. A289108.
Columns k: A028815 (k=0), A089241 (k=1), A247159 (k=2), A273801 (k=3).
Sequence in context: A112975 A257218 A349702 * A109890 A370046 A373326
KEYWORD
nonn,tabl,less
AUTHOR
Vincenzo Librandi, Sep 02 2017
STATUS
approved