login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349699
Triangular numbers with exactly 10 divisors.
1
496, 3321, 13203, 195625, 780625, 2883601, 11527201, 107186761, 407879641, 3487920481, 39155632561, 250123560121, 47622568443841, 95853663421561, 322876778328721, 403230060146161, 3034217580863041, 6333850463213521, 13292221046055841, 25335401515201441
OFFSET
1,1
COMMENTS
All terms are of the form p^4 * q, with primes p < q.
a(3) = 13203 = 3^4 * 163 is the only term for which q = 2*p^4 + 1; for all other terms, q is either 2*p^4 - 1 (e.g., a(1) = 496 = 2^4 * 31) or (p^4 + 1)/2 (e.g., a(2) = 3321 = 3^4 * 41).
LINKS
EXAMPLE
Table showing the first 20 terms and their prime factorizations. Because of the different relationships between the prime factors p and q for different terms (see Comments), neither the values of p nor those of q are nondecreasing.
.
n a(n) = p^4 * q
-- -------------------------------------
1 496 = 2^4 * 31
2 3321 = 3^4 * 41
3 13203 = 3^4 * 163
4 195625 = 5^4 * 313
5 780625 = 5^4 * 1249
6 2883601 = 7^4 * 1201
7 11527201 = 7^4 * 4801
8 107186761 = 11^4 * 7321
9 407879641 = 13^4 * 14281
10 3487920481 = 17^4 * 41761
11 39155632561 = 23^4 * 139921
12 250123560121 = 29^4 * 353641
13 47622568443841 = 47^4 * 9759361
14 95853663421561 = 61^4 * 6922921
15 322876778328721 = 71^4 * 12705841
16 403230060146161 = 73^4 * 14199121
17 3034217580863041 = 79^4 * 77900161
18 6333850463213521 = 103^4 * 56275441
19 13292221046055841 = 113^4 * 81523681
20 25335401515201441 = 103^4 * 225101761
MATHEMATICA
t[n_] := n*(n + 1)/2; Select[t /@ Range[10^5], DivisorSigma[0, #] == 10 &] (* Amiram Eldar, Nov 26 2021 *)
PROG
(PARI) select(x->(numdiv(x)==10), vector(10^5, k, k*(k+1)/2)) \\ Michel Marcus, Nov 26 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Nov 25 2021
STATUS
approved