Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #78 Sep 09 2023 06:49:26
%S 1,1,1,1,1,2,1,1,1,2,1,2,1,2,2,1,1,2,1,2,2,2,1,2,1,2,1,2,1,4,1,1,2,2,
%T 2,2,1,2,2,2,1,4,1,2,2,2,1,2,1,2,2,2,1,2,2,2,2,2,1,4,1,2,2,1,2,4,1,2,
%U 2,4,1,2,1,2,2,2,2,4,1,2,1,2,1,4,2,2,2,2,1,4
%N Number of ways of writing n as p*q, with p <= q, gcd(p, q) = 1.
%C a(n), n >= 2, is the number of divisor products in the numerator as well as denominator of the unique representation of n in terms of divisor products. See the W. Lang link under A007955, where a(n)=l(n) in Table 1. - _Wolfdieter Lang_, Feb 08 2011
%C Record values are the binary powers, occurring at primorial positions except at 2: a(A002110(0))=A000079(0), a(A002110(n+1))=A000079(n) for n > 0. - _Reinhard Zumkeller_, Aug 24 2011
%C For n > 1: a(n) = (A000005(n) - A048105(n)) / 2; number of ones in row n of triangle in A225817. - _Reinhard Zumkeller_, Jul 30 2013
%H T. D. Noe, <a href="/A007875/b007875.txt">Table of n, a(n) for n = 1..1000</a>
%H Larry Bates and Peter Gibson, <a href="http://arxiv.org/abs/1603.06622">A geometry where everything is better than nice</a>, arXiv:1603.06622 [math.DG], (21-March-2016); see page 2.
%H Vaclav Kotesovec, <a href="/A007875/a007875.jpg">Graph - the asymptotic ratio</a>.
%F a(n) = (1/2)*Sum_{ d divides n } abs(mu(d)) = 2^(A001221(n)-1) = A034444(n)/2, n > 1. - _Vladeta Jovovic_, Jan 25 2002
%F a(n) = phi(2^omega(n)) = A000010(2^A001221(n)). - _Enrique Pérez Herrero_, Apr 10 2012
%F Sum_{k=1..n} a(k) ~ 3*n*((log(n) + (2*gamma - 1))/ Pi^2 - 12*(zeta'(2)/Pi^4)), where gamma is the Euler-Mascheroni constant A001620. Equivalently, Sum_{k=1..n} a(k) ~ 3*n*(log(n) + 24*log(A) - 1 - 2*log(2*Pi)) / Pi^2, where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Jan 30 2019
%F a(n) = Sum_{d|n} mu(d) * A018892(n/d). - _Daniel Suteu_, Jan 08 2021
%F Dirichlet g.f.: (zeta(s)^2/zeta(2*s) + 1)/2. - _Amiram Eldar_, Sep 09 2023
%p A007875 := proc(n)
%p if n = 1 then
%p 1;
%p else
%p 2^(A001221(n)-1) ;
%p end if;
%p end proc: # _R. J. Mathar_, May 28 2016
%t a[n_] := With[{r = Reduce[1 <= p <= q <= n && n == p*q && GCD[p, q] == 1, {p, q}, Integers]}, If[Head[r] === And, 1, Length[r]]]; Table[a[n], {n, 1, 90}] (* _Jean-François Alcover_, Nov 02 2011 *)
%t a[n_] := EulerPhi[2^PrimeNu[n]]; Array[a, 105] (* _Robert G. Wilson v_, Apr 10 2012 *)
%t a[n_] := Sum[If[Mod[n, k] == 0, Re[Sqrt[MoebiusMu[k]]], 0], {k, 1, n}] (* _Mats Granvik_, Aug 10 2018 *)
%o (Haskell)
%o a007875 = length . filter (> 0) . a225817_row
%o -- _Reinhard Zumkeller_, Jul 30 2013, Aug 24 2011
%o (PARI) a(n)=ceil((1<<omega(n))/2) \\ _Charles R Greathouse IV_, Nov 02 2011
%Y Cf. A000005, A000010, A000079, A001221, A001620, A002110, A007955, A034444, A048105, A074962.
%K nonn,nice,easy
%O 1,6
%A Victor Ufnarovski