login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355823
a(n) = 1 if all exponents in prime factorization of n are powers of 2, otherwise 0.
4
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0
OFFSET
1
FORMULA
Multiplicative with a(p^e) = A209229(e).
For all n >= 1, A302777(n) <= a(n) <= A355825(n).
a(n) = A091862(A225546(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A271727. - Amiram Eldar, Jul 23 2022
EXAMPLE
For n = 8 = 2^3, a(8) = 0 as 3 is not a power of 2 (in A000079).
MATHEMATICA
a[n_] := If[AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &], 1, 0]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI) A355823(n) = factorback(apply(e->!bitand(e, e-1), factor(n)[, 2]));
CROSSREFS
Characteristic function of A138302, "Exponentially 2^n-numbers".
Cf. A000079, A091862, A209229, A225546, A271727, A302777, A355824 (Dirichlet inverse).
Differs from related A355825 for the first time at n=128, where a(128) = 0, while A355825(128) = 1.
Sequence in context: A077010 A330548 A225817 * A355825 A332732 A248863
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jul 19 2022
STATUS
approved