login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271727
Decimal expansion of the density of exponentially 2^n-numbers (A138302).
8
8, 7, 2, 4, 9, 7, 1, 7, 9, 3, 5, 3, 9, 1, 2, 8, 1, 3, 5, 5, 8, 0, 0, 7, 7, 1, 4, 3, 3, 2, 5, 3, 1, 8, 6, 6, 9, 1, 9, 5, 8, 3, 9, 3, 9, 7, 7, 7, 3, 3, 3, 7, 3, 7, 6, 5, 4, 1, 2, 4, 2, 2, 6, 2, 1, 3, 1, 1, 2, 7, 8, 3, 5, 9, 0, 3, 9, 8, 1, 4, 2, 9, 7, 9, 2, 2, 1, 7, 8, 4, 4, 1, 6, 5, 9, 9, 1, 5
OFFSET
0,1
LINKS
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015-2016.
Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
FORMULA
Equals Product_{prime p} f(1/p), where f(x) = 1-x^3+Sum_{n>=2}(x^(2^n)-x^(1+2^n)).
EXAMPLE
0.87249717935391281355800771433253186691958393977733373765412...
MATHEMATICA
$MaxExtraPrecision = m = 500; em = 10; f[x_] := Log[1 - x^3 + Sum[x^(2^e) - x^(1 + 2^e), {e, 2, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]] (* Amiram Eldar, Sep 09 2022 *)
CROSSREFS
Density of A138302.
Cf. A271726 (Expansion of log(f(x))).
Sequence in context: A328895 A154846 A173598 * A154164 A021538 A179044
KEYWORD
nonn,cons
AUTHOR
Juan Arias-de-Reyna, Apr 13 2016
STATUS
approved