OFFSET
0,1
LINKS
Juan Arias-de-Reyna, Table of n, a(n) for n = 0..1000
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015-2016.
Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016.
FORMULA
Equals Product_{prime p} f(1/p), where f(x) = 1-x^3+Sum_{n>=2}(x^(2^n)-x^(1+2^n)).
EXAMPLE
0.87249717935391281355800771433253186691958393977733373765412...
MATHEMATICA
$MaxExtraPrecision = m = 500; em = 10; f[x_] := Log[1 - x^3 + Sum[x^(2^e) - x^(1 + 2^e), {e, 2, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]] (* Amiram Eldar, Sep 09 2022 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Juan Arias-de-Reyna, Apr 13 2016
STATUS
approved