login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the density of exponentially 2^n-numbers (A138302).
8

%I #24 Nov 17 2024 16:41:43

%S 8,7,2,4,9,7,1,7,9,3,5,3,9,1,2,8,1,3,5,5,8,0,0,7,7,1,4,3,3,2,5,3,1,8,

%T 6,6,9,1,9,5,8,3,9,3,9,7,7,7,3,3,3,7,3,7,6,5,4,1,2,4,2,2,6,2,1,3,1,1,

%U 2,7,8,3,5,9,0,3,9,8,1,4,2,9,7,9,2,2,1,7,8,4,4,1,6,5,9,9,1,5

%N Decimal expansion of the density of exponentially 2^n-numbers (A138302).

%H Juan Arias-de-Reyna, <a href="/A271727/b271727.txt">Table of n, a(n) for n = 0..1000</a>

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1510.05914">Exponentially S-numbers</a>, arXiv:1510.05914 [math.NT], 2015-2016.

%H Vladimir Shevelev, <a href="http://arxiv.org/abs/1602.04244">A fast computation of density of exponentially S-numbers</a>, arXiv:1602.04244 [math.NT], 2016.

%F Equals Product_{prime p} f(1/p), where f(x) = 1-x^3+Sum_{n>=2}(x^(2^n)-x^(1+2^n)).

%e 0.87249717935391281355800771433253186691958393977733373765412...

%t $MaxExtraPrecision = m = 500; em = 10; f[x_] := Log[1 - x^3 + Sum[x^(2^e) - x^(1 + 2^e), {e, 2, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]] (* _Amiram Eldar_, Sep 09 2022 *)

%Y Density of A138302.

%Y Cf. A271726 (Expansion of log(f(x))).

%K nonn,cons

%O 0,1

%A _Juan Arias-de-Reyna_, Apr 13 2016