login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355824
Dirichlet inverse of A355823, characteristic function of exponentially 2^n-numbers.
3
1, -1, -1, 0, -1, 1, -1, 1, 0, 1, -1, 0, -1, 1, 1, -2, -1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 0, -1, -1, -1, 2, 1, 1, 1, 0, -1, 1, 1, -1, -1, -1, -1, 0, 0, 1, -1, 2, 0, 0, 1, 0, -1, -1, 1, -1, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 2, -2, 1, -1, 0, 1, 1, 1, -1, -1, 0, 1, 0, 1, 1, 1, -2, -1, 0, 0, 0, -1, -1, -1, -1, -1, 1, -1, 0, -1, -1, 1, 2, -1, -1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, -1, -3
OFFSET
1,16
COMMENTS
Multiplicative because A355823 is.
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A355823(n/d) * a(d).
MATHEMATICA
s[n_] := If[AllTrue[FactorInteger[n][[;; , 2]], # == 2^IntegerExponent[#, 2] &], 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#] * a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 19 2022 *)
PROG
(PARI)
A355823(n) = factorback(apply(e->!bitand(e, e-1), factor(n)[, 2]));
memoA355824 = Map();
A355824(n) = if(1==n, 1, my(v); if(mapisdefined(memoA355824, n, &v), v, v = -sumdiv(n, d, if(d<n, A355823(n/d)*A355824(d), 0)); mapput(memoA355824, n, v); (v)));
CROSSREFS
Differs from related A355826 for the first time at n=128, where a(128) = -3, while A355826(128) = -4.
Sequence in context: A339872 A280269 A321894 * A355826 A355819 A330262
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Jul 19 2022
STATUS
approved