The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070967 a(n) = Sum_{k=0..n} binomial(6*n,6*k). 10
 1, 2, 926, 37130, 2973350, 174174002, 11582386286, 729520967450, 47006639297270, 2999857885752002, 192222214478506046, 12295976362284182570, 787111112023373201990, 50370558298891875954002, 3223838658635388303336206, 206322355109994528871954490 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES Matthijs Coster, Supercongruences, Thesis, Jun 08, 1988. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..554 Index entries for linear recurrences with constant coefficients, signature (38,1691,-1728). FORMULA G.f.: (1-36x-841x^2+288x^3)/((1-x)(1+27x)(1-64x)). a(n) = ((-27)^n + 1)/3 + (64^n +0^n)/6. Let b(n)=a(n)-2^(6n)/6 then b(n)+26*b(n-1)-27*b(n-2)=0 - Benoit Cloitre, May 27 2004 MATHEMATICA Table[Sum[Binomial[6n, 6k], {k, 0, n}], {n, 0, 20}] (* or *) LinearRecurrence[ {38, 1691, -1728}, {1, 2, 926, 37130}, 30] (* Harvey P. Dale, Jun 19 2021 *) PROG (PARI) a(n)=sum(k=0, n, binomial(6*n, 6*k)) (PARI) a(n)=if(n<0, 0, (2*(-27)^n+2+64^n+0^n)/6) (PARI) a(n)=if(n<0, 0, polsym(x*(x-64)*(x+27)^2*(x-1)^2, n)[n+1]/6) CROSSREFS Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), this sequence (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10). Sequence in context: A324597 A159723 A282346 * A070927 A070922 A332192 Adjacent sequences: A070964 A070965 A070966 * A070968 A070969 A070970 KEYWORD easy,nonn AUTHOR Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 16 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 23:12 EDT 2024. Contains 375044 sequences. (Running on oeis4.)