login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070782 a(n) = Sum_{k=0..n} binomial(5*n,5*k). 11
1, 2, 254, 6008, 215766, 6643782, 215492564, 6863694378, 219993856006, 7035859329512, 225191238869774, 7205634556190798, 230585685502492596, 7378682274243863442, 236118494435702913134, 7555784484021765207768, 241785184867484394069286, 7737125013254912900576822 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..664

Index entries for linear recurrences with constant coefficients, signature (21,353,-32).

FORMULA

a(n) = (1/5)*32^n + (2/5)*(-11/2 + (5/2)*sqrt(5))^n + (2/5)*(-11/2 - (5/2)*sqrt(5))^n.

Let b(n) = a(n) - 2^(5n)/5; then b(n) + 11*b(n-1) - b(n-2) = 0. - Benoit Cloitre, May 27 2004

From Colin Barker, May 27 2019: (Start)

G.f.: (1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)).

a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>2.

(End)

PROG

(PARI) a(n)=sum(k=0, n, binomial(5*n, 5*k))

(PARI) Vec((1 - 19*x - 141*x^2) / ((1 - 32*x)*(1 + 11*x - x^2)) + O(x^20)) \\ Colin Barker, May 27 2019

CROSSREFS

Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), this sequence (b=5), A070967 (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10).

Sequence in context: A177320 A304211 A224828 * A078167 A004875 A067480

Adjacent sequences:  A070779 A070780 A070781 * A070783 A070784 A070785

KEYWORD

easy,nonn

AUTHOR

Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 16:55 EDT 2021. Contains 344959 sequences. (Running on oeis4.)