login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A070832 a(n) = Sum_{k=0..n} binomial(8*n,8*k). 10
1, 2, 12872, 1470944, 622116992, 125858012672, 36758056208384, 8793364151263232, 2334899414608412672, 586347560750962049024, 151652224498623981289472, 38612725801339748322639872, 9913426188311626771400228864
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
Let b(n) = a(n)-2^(8*n)/8 then b(n)+120*b(n-1)-2160*b(n-2)-256*b(n-3)=0. - Benoit Cloitre, May 27 2004
a(n) = 1/4*16^n + 1/8*256^n + 1/4*(-68 + 48*sqrt(2))^n + 1/4*(-68-48*sqrt(2))^n.
From Colin Barker, May 27 2019: (Start)
G.f.: (1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)).
a(n) = 21*a(n-1) + 353*a(n-2) - 32*a(n-3) for n>4.
(End)
MATHEMATICA
Table[Sum[Binomial[8n, 8k], {k, 0, n}], {n, 0, 15}] (* Harvey P. Dale, Nov 25 2020 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(8*n, 8*k)); \\ Benoit Cloitre, May 27 2004
(PARI) Vec((1 - 134*x - 20280*x^2 + 207296*x^3 + 8192*x^4) / ((1 - 16*x)*(1 - 256*x)*(1 + 136*x + 16*x^2)) + O(x^15)) \\ Colin Barker, May 27 2019
CROSSREFS
Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), A070775 (b=4), A070782 (b=5), A070967 (b=6), A094211 (b=7), this sequence (b=8), A094213 (b=9), A070833 (b=10).
Sequence in context: A265013 A083973 A094212 * A170994 A151599 A297573
KEYWORD
easy,nonn
AUTHOR
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 14:36 EDT 2024. Contains 376012 sequences. (Running on oeis4.)