login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; a(n+1) = sum{k|n} a(k) * mu(k), where the sum is over the positive divisors, k, of n; and mu(k) is the Moebius function.
7

%I #19 Feb 14 2015 12:34:05

%S 1,1,0,1,0,1,1,0,0,1,1,0,1,0,-1,0,0,1,1,0,1,1,0,1,1,1,0,1,-1,2,-1,2,0,

%T 0,0,0,1,0,-1,-1,1,0,1,0,0,0,0,1,1,0,1,2,0,1,1,1,-1,-1,0,1,-1,2,3,1,0,

%U 0,1,0,0,1,-1,2,1,0,-1,0,-1,-2,2,-1,1,1,0,1,1,2,1,3,0,1,-1,-2,0,2,2,2,1,0,-1,0,1,0,2,-1,0

%N a(1) = 1; a(n+1) = sum{k|n} a(k) * mu(k), where the sum is over the positive divisors, k, of n; and mu(k) is the Moebius function.

%C Conjecture: all integers are present. - _W. Edwin Clark_, Aug 20 2004

%C a(A227953(n)) = n and a(A227954(n)) = -n. - _Reinhard Zumkeller_, Aug 01 2013

%H Reinhard Zumkeller, <a href="/A070965/b070965.txt">Table of n, a(n) for n = 1..10000</a>

%e a(7) = a(1) mu(1) + a(2) mu(2) + a(3) mu(3) + a(6) mu(6) = 1 - 1 - 0 + 1 = 1 because 1, 2, 3 and 6 are the divisors of 6.

%p a:=proc(n) option remember; add(numtheory[mobius](i)*a(i),i in numtheory[divisors](n-1)) end: a(1):=1: seq(a(n),n=1..100); # Alec Mihailovs, Aug 20 2004

%t a[1] = a[2] = 1; a[n_] := a[n] = Block[{d = Divisors[n - 1]}, Plus @@ (MoebiusMu[d]*a /@ d)]; Table[ a[n], {n, 105}] (* _Robert G. Wilson v_, Aug 21 2004 *)

%o (PARI) a(n)=if(n<3,1,sumdiv(n-1,k,a(k)*moebius(k))) \\ _Charles R Greathouse IV_, Feb 07 2013

%o (Haskell)

%o a070965 n = a070965_list !! (n-1)

%o a070965_list = 1 : f 1 where

%o f x = y : f (x + 1) where

%o y = sum $ zipWith (*) (map a070965 $ a027750_row x) (a225817_row x)

%o -- _Reinhard Zumkeller_, Jul 30 2013

%Y Cf. A027750, A225817.

%K sign

%O 1,30

%A _Leroy Quet_, May 16 2002