login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102311
a(n) = Sum_{k=1..n} Fibonacci(k*(n-k)).
1
0, 1, 2, 7, 22, 86, 414, 2521, 19494, 191695, 2397716, 38148444, 772057396, 19875413009, 650843469738, 27110077916903, 1436411242814058, 96810095832996034, 8299583912379548210, 905077596297808256825, 125547805293905152853710, 22152679283963321048140511
OFFSET
1,3
FORMULA
G.f.: Sum_{n>=1} Fibonacci(n)*x^(n+1) / (1 - Lucas(n)*x + (-1)^n*x^2), where Lucas(n) = A000204(n). - Paul D. Hanna, Jan 28 2012
a(n) ~ c * phi^(n^2/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 1.14267253730874516106624178718900147373346430046702447860265114357421... - Vaclav Kotesovec, Jan 08 2021
MATHEMATICA
Table[Sum[Fibonacci[k(n-k)], {k, n}], {n, 30}] (* Harvey P. Dale, Jul 03 2019 *)
PROG
(PARI) {a(n)=sum(k=1, n, fibonacci(k*(n-k)))}
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=polcoeff(sum(m=1, n, fibonacci(m)*x^(m+1)/(1-Lucas(m)*x+(-1)^m*x^2+x*O(x^n))), n)} /* Paul D. Hanna, Jan 28 2012 */
CROSSREFS
Cf. Antidiagonal sums of array A102310.
Sequence in context: A150323 A150324 A150325 * A150326 A150327 A150328
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jan 06 2005
STATUS
approved