Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 18 2023 23:04:30
%S 0,1,2,7,22,86,414,2521,19494,191695,2397716,38148444,772057396,
%T 19875413009,650843469738,27110077916903,1436411242814058,
%U 96810095832996034,8299583912379548210,905077596297808256825,125547805293905152853710,22152679283963321048140511
%N a(n) = Sum_{k=1..n} Fibonacci(k*(n-k)).
%F G.f.: Sum_{n>=1} Fibonacci(n)*x^(n+1) / (1 - Lucas(n)*x + (-1)^n*x^2), where Lucas(n) = A000204(n). - _Paul D. Hanna_, Jan 28 2012
%F a(n) ~ c * phi^(n^2/4), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 1.14267253730874516106624178718900147373346430046702447860265114357421... - _Vaclav Kotesovec_, Jan 08 2021
%t Table[Sum[Fibonacci[k(n-k)],{k,n}],{n,30}] (* _Harvey P. Dale_, Jul 03 2019 *)
%o (PARI) {a(n)=sum(k=1,n,fibonacci(k*(n-k)))}
%o (PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
%o {a(n)=polcoeff(sum(m=1,n,fibonacci(m)*x^(m+1)/(1-Lucas(m)*x+(-1)^m*x^2+x*O(x^n))),n)} /* Paul D. Hanna, Jan 28 2012 */
%Y Cf. Antidiagonal sums of array A102310.
%Y Cf. A000204, A001622.
%K nonn
%O 1,3
%A _Ralf Stephan_, Jan 06 2005