login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058543
McKay-Thompson series of class 18e for the Monster group.
2
1, -2, 1, -4, 8, -6, 10, -16, 18, -26, 33, -40, 58, -74, 82, -112, 147, -166, 212, -268, 316, -392, 476, -560, 695, -838, 967, -1184, 1430, -1648, 1970, -2352, 2731, -3236, 3803, -4404, 5206, -6080, 6984, -8192, 9553, -10942, 12709, -14736, 16886, -19506, 22448, -25648, 29552
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-x)^2 * chi(-x^3)^2 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Aug 18 2007
Expansion of q^(-1/3) * (eta(q) * eta(q^3) / (eta(q^2) * eta(q^6)))^2 in powers of q. - Michael Somos, Aug 18 2007
Euler transform of period 6 sequence [ -2, 0, -4, 0, -2, 0, ...]. - Michael Somos, Aug 18 2007
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2)) where f(u, v) = v^2 - u^2 * v - 4 * u. - Michael Somos, Aug 18 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 4 / f(t) where q = exp(2 Pi i t). - Michael Somos, Aug 18 2007
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Sep 08 2017
EXAMPLE
G.f. = 1 - 2*x + x^2 - 4*x^3 + 8*x^4 - 6*x^5 + 10*x^6 - 16*x^7 + 18*x^8 - ...
T18e = 1/q - 2*q^2 + q^5 - 4*q^8 + 8*q^11 - 6*q^14 + 10*q^17 - 16*q^20 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q, q^2] QPochhammer[ q^3, q^6])^2, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) / (eta(x^2 + A) * eta(x^6 + A)))^2, n))}; /* Michael Somos, Aug 18 2007 */
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved