login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118272
Expansion of q^(-2/3) * (eta(q) * eta(q^3) * eta(q^6) / eta(q^2))^2 in powers of q.
3
1, -2, 1, -4, 8, -6, 6, -8, 14, -10, 1, -16, 20, -14, 12, -16, 31, -18, 8, -20, 32, -28, 18, -24, 38, -32, 6, -28, 44, -30, 24, -40, 57, -34, 14, -36, 72, -38, 30, -48, 62, -52, 1, -44, 68, -46, 48, -56, 74, -50, 20, -64, 80, -64, 42, -56, 108, -58, 12, -60, 112, -76, 48, -64, 98, -66, 31, -80, 104, -80, 54, -88
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x^3)^6 / f(x, x^2)^2 = phi(-x^3)^2 * f(-x, -x^5)^2 in powers of x where phi(), f() are Ramanujan theta functions. - Michael Somos, Mar 22 2015
Euler transform of period 6 sequence [ -2, 0, -4, 0, -2, -4, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 16 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A252651. - Michael Somos, Mar 22 2015
G.f.: Product_{k>0} (1 - x^k)^2 * (1 - x^(3*k))^2 * (1 - x^(2*k) + x^(4*k))^2. - Michael Somos, Mar 22 2015
-3 * a(n) = A118271(3*n + 2).
EXAMPLE
G.f. = 1 - 2*x + x^2 - 4*x^3 + 8*x^4 - 6*x^5 + 6*x^6 - 8*x^7 + 14*x^8 + ...
G.f. = q^2 - 2*q^5 + q^8 - 4*q^11 + 8*q^14 - 6*q^17 + 6*q^20 - 8*q^23 + ...
MATHEMATICA
QP:= QPochhammer; a[n_]:= SeriesCoefficient[QP[x^3]^6/(QP[-x, x^3]* QP[-x^2, x^3]*QP[x^3])^2, {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 15 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A) * eta(x^6 + A) / eta(x^2 + A))^2, n))};
(PARI) q='q+O('q^99); Vec((eta(q)*eta(q^3)*eta(q^6)/eta(q^2))^2) \\ Altug Alkan, Apr 16 2018
(Magma) A := Basis( ModularForms( Gamma0(36), 2), 180); A[3] - 2*A[6] + A[9]; /* Michael Somos, Mar 22 2015 */
CROSSREFS
Sequence in context: A059148 A158451 A257706 * A112173 A058543 A353661
KEYWORD
sign
AUTHOR
Michael Somos, Apr 21 2006
STATUS
approved