|
|
A118269
|
|
See sequence A118268 for description.
|
|
2
|
|
|
1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 2, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 1, 0, 1, 0, 4, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 2, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,22
|
|
LINKS
|
Michael De Vlieger, Table of n, a(n) for n = 0..10000
|
|
MATHEMATICA
|
MapAt[# + 1 &, #, 1] &@ FoldList[{#1~Join~IntegerDigits[#2, 2], #2} & @@ {First@ #1, SequenceCount[First@ #1, IntegerDigits[#2, 2]]} &, {{1}, 0}, Range@ 104][[All, -1]] (* Michael De Vlieger, Sep 30 2017 *)
|
|
PROG
|
Contribution from Franklin T. Adams-Watters, May 14 2010: (Start)
(PARI) inbase(n, b=10)=local(r); r=[n%b]; while((n\=b)>0, r=concat([n%b], r)); r
countsub(v, w)=local(r); r=max(#v-#w+1, 0); for(k=1, #v-#w+1, for(j=1, #w, if(v[k+j-1]!=w[j], r--; break))); r
al(n)=local(v, r, ni); v=r=[1]; for(k=1, n, ni=countsub(v, inbase(k, 2)); v=concat(v, inbase(ni, 2)); r=concat(r, [ni])); print(v); r
/* Prints A118268, returns A118269. */ (End)
|
|
CROSSREFS
|
Cf. A118268.
Sequence in context: A029406 A158461 A281498 * A144152 A265674 A229297
Adjacent sequences: A118266 A118267 A118268 * A118270 A118271 A118272
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Leroy Quet, Apr 20 2006
|
|
EXTENSIONS
|
More terms from Franklin T. Adams-Watters, May 14 2010
|
|
STATUS
|
approved
|
|
|
|