

A118267


Number of partitions of n such that if the smallest part is k, then both k and k+1 occur exactly once.


0



0, 0, 1, 0, 1, 1, 2, 1, 4, 3, 5, 6, 9, 9, 15, 15, 22, 26, 34, 38, 53, 60, 77, 91, 115, 133, 170, 196, 243, 287, 349, 408, 500, 582, 701, 822, 984, 1147, 1371, 1594, 1889, 2204, 2596, 3014, 3549, 4111, 4812, 5576, 6502, 7512, 8744, 10081, 11691, 13470, 15573, 17898
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


COMMENTS

Also number of partitions of n such that if the largest part is k, then k1 occurs exactly once and k2 also occurs (0 is considered to be a part of each partition). Example: a(11)=5 because we have [4,3,2,2], [4,3,2,1,1], [3,3,2,1,1,1], [2,2,2,2,2,1] and [3,2,1,1,1,1,1,1].


LINKS

Table of n, a(n) for n=1..56.


FORMULA

G.f.: sum(x^(2k+1)/product(1x^j, j=k+2..infinity), k=1..infinity). G.f.: sum(x^(3k3)/[(1x^k)*product(1x^j, j=1..k2)], k=2..infinity).
a(n) = p(n+4)+2*p(n+3)p(n+1)p(n1)+p(n2), where p(n) = A000041(n).  Mircea Merca, Jul 10 2013


EXAMPLE

a(11)=5 because we have [8,2,1], [6,5], [6,3,2], [5,3,2,1] and [4,4,2,1].


MAPLE

g:=sum(x^(3*k3)/(1x^k)/product(1x^j, j=1..k2), k=2..30): gser:=series(g, x, 65): seq(coeff(gser, x, n), n=1..62);


CROSSREFS

Sequence in context: A328676 A269595 A055176 * A324755 A259019 A262663
Adjacent sequences: A118264 A118265 A118266 * A118268 A118269 A118270


KEYWORD

nonn


AUTHOR

Emeric Deutsch, Apr 20 2006


STATUS

approved



