login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080478
a(n) = smallest k>a(n-1) such that k^2+a(n-1)^2 is prime, starting with a(1)=1. Square roots of A062067(n).
5
1, 2, 3, 8, 13, 20, 23, 30, 31, 44, 49, 74, 79, 80, 89, 96, 101, 104, 105, 116, 119, 124, 131, 134, 139, 140, 149, 150, 157, 158, 165, 172, 173, 178, 183, 202, 203, 230, 231, 250, 257, 260, 261, 274, 289, 290, 291, 296, 311, 334, 335, 342, 343, 360, 367, 372
OFFSET
1,2
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (first 2000 terms from Zak Seidov).
MAPLE
A[1]:= 1:
for n from 2 to 100 do
for k from A[n-1]+1 while not isprime(k^2+A[n-1]^2) do od:
A[n]:= k
od:
seq(A[n], n=1..100); # Robert Israel, Sep 01 2014
MATHEMATICA
nxt[n_]:=Module[{n2=n^2, k=n+1}, While[!PrimeQ[k^2+n2], k++]; k]; NestList[nxt, 1, 60] (* Harvey P. Dale, Jun 24 2012 *)
a=1; sq={1}; Do[a2=a^2; b=a+1; While[!PrimeQ[a2+b^2], b=b+2]; AppendTo[sq, b]; a=b, {100}]; sq (* Zak Seidov, Feb 21 2014 *)
PROG
(PARI) p=1; print1(p", "); for(n=2, 1000, if(isprime(p+n^2), print1(n", "); p=n^2))
(Haskell)
a080478 n = a080478_list !! (n-1)
a080478_list = 1 : f 1 [2..] where
f x (y:ys) | a010051 (x*x + y*y) == 1 = y : (f y ys)
| otherwise = f x ys
-- Reinhard Zumkeller, Apr 28 2011
(Python)
from sympy import isprime
A080478, a = [1], 1
for _ in range(1, 10000):
....a += 1
....b = 2*a*(a-1) + 1
....while not isprime(b):
........b += 4*(a+1)
........a += 2
....A080478.append(a) # Chai Wah Wu, Sep 01 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 22 2003
EXTENSIONS
PARI program corrected by Zak Seidov, Apr 14 2008
STATUS
approved