login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268293
a(n) = A266489(n)/n, for n>=1.
2
1, 1, 4, 33, 436, 8183, 204086, 6482641, 254507098, 12071123966, 679190315310, 44661150338934, 3389246296048276, 293668284385781381, 28785799019660366614, 3166449702201279923725, 388125298319949129243244, 52681998287784899631795504, 7874555043366017438046929702, 1289724117374870730134874529049
OFFSET
1,3
COMMENTS
Conjectured to consist entirely of integers.
LINKS
FORMULA
The g.f. of A266489, G(x) = 1 + x*A'(x), satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1.
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 33*x^4 + 436*x^5 + 8183*x^6 + 204086*x^7 + 6482641*x^8 + 254507098*x^9 + 12071123966*x^10 +...
such that G(x) = 1 + x*A'(x):
G(x) = 1 + x + 2*x^2 + 12*x^3 + 132*x^4 + 2180*x^5 + 49098*x^6 + 1428602*x^7 + 51861128*x^8 + 2290563882*x^9 + 120711239660*x^10 +...+ A266489(n)*x^n +...
satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1.
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A] = -Vec(subst(Ser(A), x, x/Ser(A)^(#A-1)))[#A]); A[n+1]/n}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A266489.
Sequence in context: A192548 A119821 A102321 * A193421 A179421 A356834
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2016
STATUS
approved