The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268293 a(n) = A266489(n)/n, for n>=1. 2
1, 1, 4, 33, 436, 8183, 204086, 6482641, 254507098, 12071123966, 679190315310, 44661150338934, 3389246296048276, 293668284385781381, 28785799019660366614, 3166449702201279923725, 388125298319949129243244, 52681998287784899631795504, 7874555043366017438046929702, 1289724117374870730134874529049 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Conjectured to consist entirely of integers.
LINKS
FORMULA
The g.f. of A266489, G(x) = 1 + x*A'(x), satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1.
EXAMPLE
G.f.: A(x) = x + x^2 + 4*x^3 + 33*x^4 + 436*x^5 + 8183*x^6 + 204086*x^7 + 6482641*x^8 + 254507098*x^9 + 12071123966*x^10 +...
such that G(x) = 1 + x*A'(x):
G(x) = 1 + x + 2*x^2 + 12*x^3 + 132*x^4 + 2180*x^5 + 49098*x^6 + 1428602*x^7 + 51861128*x^8 + 2290563882*x^9 + 120711239660*x^10 +...+ A266489(n)*x^n +...
satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1.
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A] = -Vec(subst(Ser(A), x, x/Ser(A)^(#A-1)))[#A]); A[n+1]/n}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A266489.
Sequence in context: A192548 A119821 A102321 * A193421 A179421 A356834
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 04:31 EDT 2024. Contains 372807 sequences. (Running on oeis4.)