The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268293 a(n) = A266489(n)/n, for n>=1. 2
 1, 1, 4, 33, 436, 8183, 204086, 6482641, 254507098, 12071123966, 679190315310, 44661150338934, 3389246296048276, 293668284385781381, 28785799019660366614, 3166449702201279923725, 388125298319949129243244, 52681998287784899631795504, 7874555043366017438046929702, 1289724117374870730134874529049 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjectured to consist entirely of integers. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA The g.f. of A266489, G(x) = 1 + x*A'(x), satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1. EXAMPLE G.f.: A(x) = x + x^2 + 4*x^3 + 33*x^4 + 436*x^5 + 8183*x^6 + 204086*x^7 + 6482641*x^8 + 254507098*x^9 + 12071123966*x^10 +... such that G(x) = 1 + x*A'(x): G(x) = 1 + x + 2*x^2 + 12*x^3 + 132*x^4 + 2180*x^5 + 49098*x^6 + 1428602*x^7 + 51861128*x^8 + 2290563882*x^9 + 120711239660*x^10 +...+ A266489(n)*x^n +... satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1. PROG (PARI) {a(n) = my(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A] = -Vec(subst(Ser(A), x, x/Ser(A)^(#A-1)))[#A]); A[n+1]/n} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A266489. Sequence in context: A192548 A119821 A102321 * A193421 A179421 A356834 Adjacent sequences: A268290 A268291 A268292 * A268294 A268295 A268296 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 08 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 04:31 EDT 2024. Contains 372807 sequences. (Running on oeis4.)