OFFSET

0,9

COMMENTS

Refer to pattern of A267489, The total number of isolated 1's is a(n) and A112421 when consider at the boundary between n-th and (n-1)-th iterations and at the boundary in the same iterations concatenate on horizontal respectively. See illustrations in the links.

Empirically, a(n+4) gives the number of solutions m where 0 < m < 2^n and A014682^n(m) < 3 and A014682^n(m+2^n) = A014682^n(m)+9. - Thomas Scheuerle, Apr 25 2021

LINKS

FORMULA

Empirical g.f.: x^7 / ((1-x)^3*(1-x+x^2)*(1+x+x^2)). - Colin Barker, Jan 31 2016

PROG

(PARI) a = 3; d1 = 2; print1("0, 0, 0, 0, 0, 0, 0, 1, 3, ");

for (n = 3, 100, d2 = 0; if (Mod(n, 6)==1 || Mod(n, 6)==2, d2 = 1); d1 = d1 + d2; a = a + d1; print1(a, ", "))

CROSSREFS

KEYWORD

base,nonn

AUTHOR

Kival Ngaokrajang, Jan 31 2016

STATUS

approved