login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A266489(n)/n, for n>=1.
2

%I #7 Feb 08 2016 12:44:57

%S 1,1,4,33,436,8183,204086,6482641,254507098,12071123966,679190315310,

%T 44661150338934,3389246296048276,293668284385781381,

%U 28785799019660366614,3166449702201279923725,388125298319949129243244,52681998287784899631795504,7874555043366017438046929702,1289724117374870730134874529049

%N a(n) = A266489(n)/n, for n>=1.

%C Conjectured to consist entirely of integers.

%H Paul D. Hanna, <a href="/A268293/b268293.txt">Table of n, a(n) for n = 1..300</a>

%F The g.f. of A266489, G(x) = 1 + x*A'(x), satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1.

%e G.f.: A(x) = x + x^2 + 4*x^3 + 33*x^4 + 436*x^5 + 8183*x^6 + 204086*x^7 + 6482641*x^8 + 254507098*x^9 + 12071123966*x^10 +...

%e such that G(x) = 1 + x*A'(x):

%e G(x) = 1 + x + 2*x^2 + 12*x^3 + 132*x^4 + 2180*x^5 + 49098*x^6 + 1428602*x^7 + 51861128*x^8 + 2290563882*x^9 + 120711239660*x^10 +...+ A266489(n)*x^n +...

%e satisfies: [x^n] G( x/G(x)^n ) = 0 for n>1.

%o (PARI) {a(n) = my(A=[1, 1]); for(i=2, n, A=concat(A, 0); A[#A] = -Vec(subst(Ser(A), x, x/Ser(A)^(#A-1)))[#A]); A[n+1]/n}

%o for(n=1, 30, print1(a(n), ", "))

%Y Cf. A266489.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Feb 08 2016