login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102466
Numbers such that the number of divisors is the sum of numbers of prime factors with and without repetitions.
6
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109
OFFSET
1,1
COMMENTS
A000005(a(n)) = A001221(a(n)) + A001222(a(n)); prime powers are a subsequence (A000961); complement of A102467; not the same as A085156.
Equals { n | omega(n)=1 or Omega(n)=2 }, that is, these are exactly the prime powers (>1) and semiprimes. - M. F. Hasler, Jan 14 2008
For n > 1: A086971(a(n)) <= 1. - Reinhard Zumkeller, Dec 14 2012
MAPLE
with(numtheory):
q:= n-> is(tau(n)=bigomega(n)+nops(factorset(n))):
select(q, [$1..200])[]; # Alois P. Heinz, Jul 14 2023
MATHEMATICA
Select[Range[110], DivisorSigma[0, #]==PrimeOmega[#]+PrimeNu[#]&] (* Harvey P. Dale, Mar 09 2016 *)
PROG
(Sage)
def is_A102466(n) :
return bool(sloane.A001221(n) == 1 or sloane.A001222(n) == 2)
def A102466_list(n) :
return [k for k in (1..n) if is_A102466(k)]
A102466_list(109) # Peter Luschny, Feb 08 2012
(Haskell)
a102466 n = a102466_list !! (n-1)
a102466_list = [x | x <- [1..], a000005 x == a001221 x + a001222 x]
-- Reinhard Zumkeller, Dec 14 2012
(PARI) is(n)=my(f=factor(n)[, 2]); #f==1 || f==[1, 1]~ \\ Charles R Greathouse IV, Oct 19 2015
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 09 2005
STATUS
approved