Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 14 2023 15:30:35
%S 2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,21,22,23,25,26,27,29,31,32,
%T 33,34,35,37,38,39,41,43,46,47,49,51,53,55,57,58,59,61,62,64,65,67,69,
%U 71,73,74,77,79,81,82,83,85,86,87,89,91,93,94,95,97,101,103,106,107,109
%N Numbers such that the number of divisors is the sum of numbers of prime factors with and without repetitions.
%C A000005(a(n)) = A001221(a(n)) + A001222(a(n)); prime powers are a subsequence (A000961); complement of A102467; not the same as A085156.
%C Equals { n | omega(n)=1 or Omega(n)=2 }, that is, these are exactly the prime powers (>1) and semiprimes. - _M. F. Hasler_, Jan 14 2008
%C For n > 1: A086971(a(n)) <= 1. - _Reinhard Zumkeller_, Dec 14 2012
%H T. D. Noe, <a href="/A102466/b102466.txt">Table of n, a(n) for n = 1..1000</a>
%p with(numtheory):
%p q:= n-> is(tau(n)=bigomega(n)+nops(factorset(n))):
%p select(q, [$1..200])[]; # _Alois P. Heinz_, Jul 14 2023
%t Select[Range[110],DivisorSigma[0,#]==PrimeOmega[#]+PrimeNu[#]&] (* _Harvey P. Dale_, Mar 09 2016 *)
%o (Sage)
%o def is_A102466(n) :
%o return bool(sloane.A001221(n) == 1 or sloane.A001222(n) == 2)
%o def A102466_list(n) :
%o return [k for k in (1..n) if is_A102466(k)]
%o A102466_list(109) # Peter Luschny, Feb 08 2012
%o (Haskell)
%o a102466 n = a102466_list !! (n-1)
%o a102466_list = [x | x <- [1..], a000005 x == a001221 x + a001222 x]
%o -- _Reinhard Zumkeller_, Dec 14 2012
%o (PARI) is(n)=my(f=factor(n)[,2]); #f==1 || f==[1,1]~ \\ _Charles R Greathouse IV_, Oct 19 2015
%Y Cf. A000005, A001221, A001222, A000961, A102467, A085156, A086971, A135767.
%K nonn
%O 1,1
%A _Reinhard Zumkeller_, Jan 09 2005