login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322547
Numbers k such that every integer partition of k contains a 1, a squarefree number, or a prime power.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 67, 71, 79
OFFSET
1,2
EXAMPLE
48 does not belong to the sequence because there are integer partitions of 48 containing no 1's, squarefree numbers, or prime powers, namely: (48), (36,12), (28,20), (24,24), (24,12,12), (18,18,12), (12,12,12,12).
MATHEMATICA
nn=100;
ser=Product[If[PrimePowerQ[n]||SquareFreeQ[n], 1, 1/(1-x^n)], {n, nn}];
Join@@Position[CoefficientList[Series[ser, {x, 0, nn}], x], 0]-1
KEYWORD
nonn,fini,full
AUTHOR
Gus Wiseman, Dec 14 2018
STATUS
approved