OFFSET
1,1
COMMENTS
Sometimes called the infinitary 2-cycle attractor set.
LINKS
Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411.
J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link]
J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine]
J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
EXAMPLE
a(5)=246 because 246 is the fifth number whose infinitary aliquot sequence ends in an infinitary amicable pair.
MATHEMATICA
ExponentList[n_Integer, factors_List]:={#, IntegerExponent[n, # ]}&/@factors; InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g]==g][ #, Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #, factors]&/@d]], _?(And@@#&), {1}]] ]] ] Null; properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k; g[n_] := If[n > 0, properinfinitarydivisorsum[n], 0]; iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; InfinitaryAmicableNumberQ[k_]:=If[Nest[properinfinitarydivisorsum, k, 2]==k && !properinfinitarydivisorsum[k]==k, True, False]; Select[Range[820], InfinitaryAmicableNumberQ[Last[iTrajectory[ # ]]] &]
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
Ant King, Jan 26 2007
STATUS
approved