login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A031413
Numbers k such that the continued fraction for sqrt(k) has even period 2*m and the m-th term of the periodic part is 10.
1
102, 114, 118, 134, 142, 228, 237, 249, 273, 309, 321, 404, 412, 428, 436, 452, 460, 476, 492, 500, 508, 524, 540, 548, 556, 572, 630, 645, 655, 670, 695, 705, 745, 755, 805, 820, 830, 895, 906, 1002, 1038, 1050, 1146, 1182, 1194, 1232, 1253, 1290, 1337
OFFSET
1,1
COMMENTS
See comment to A031551. - Harvey P. Dale, Jul 10 2012
MATHEMATICA
epQ[n_]:=Module[{p=ContinuedFraction[Sqrt[n]][[2]], len}, len=Length[p]; EvenQ[len]&&p[[len/2]]==10]; nn=1300; With[{trms=Complement[Range[ nn], Range[ Floor[Sqrt[nn]]]^2]}, Select[trms, epQ]] (* Harvey P. Dale, Jul 10 2012 *)
n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[EvenQ[len] && c[[2, len/2]] == 10, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014 *)
CROSSREFS
KEYWORD
nonn
STATUS
approved