login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110849 Consider the sequence b(0)=127 and for n>0, b(n) is the least prime of the form k * b(n-1)^2 - 1 where k is a multiple of 6. This sequence gives the values of k. 0
30, 42, 30, 84, 516, 768, 804, 4806, 2838, 174, 23418, 22770 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..12.

EXAMPLE

127,

30*127^2-1,

42*(30*127^2-1)^2-1,

30*(42*(30*127^2-1)^2-1)^2-1,

84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1,

516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1,

768*(516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1)^2-1,

804*(768*(516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1,

4806*(804*(768*(516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1,

2838*(4806*(804*(768*(516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1,

174*(2838*(4806*(804*(768*(516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1,

23418*(174*(2838*(4806*(804*(768*(516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1,

and 22770*(23418*(174*(2838*(4806*(804*(768*(516*(84*(30*(42*(30*127^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1)^2-1,

are primes.

MATHEMATICA

lpf[{n_, t_}]:=Module[{a=t^2, k=6}, While[!PrimeQ[k*a-1], k=k+6]; {k, k*a-1}]; Rest[ NestList[lpf, {127, 127}, 12][[All, 1]]] (* Harvey P. Dale, Apr 25 2017 *)

CROSSREFS

Sequence in context: A039297 A043900 A103098 * A074696 A127663 A008885

Adjacent sequences:  A110846 A110847 A110848 * A110850 A110851 A110852

KEYWORD

nonn,more

AUTHOR

Pierre CAMI, Sep 17 2005

EXTENSIONS

Edited by Ray Chandler, Sep 26 2005

Definition amended by Georg Fischer, Jun 18 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 10:00 EST 2022. Contains 350607 sequences. (Running on oeis4.)