login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110851
Weight enumerator of [64,63,2] Reed-Muller code RM(5,6).
2
1, 2016, 635376, 74974368, 4426165368, 151473214816, 3284214703056, 47855699958816, 488526937079580, 3601688791018080, 19619725782651120, 80347448443237920, 250649105469666120, 601557853127198688, 1118770292985239888, 1620288010530347424, 1832624140942590534
OFFSET
0,2
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
a(n) = binomial(64, 2*n). - Georg Fischer, Jul 01 2021
EXAMPLE
4426165368*x^8*y^56 + 1620288010530347424*x^30*y^34 + 47855699958816*x^14*y^50 + 601557853127198688*x^26*y^38 + 80347448443237920*x^22*y^42 + 19619725782651120*x^20*y^44 + 488526937079580*x^16*y^48 + 3601688791018080*x^46*y^18 + 19619725782651120*x^44*y^20 + y^64 + 1832624140942590534*x^32*y^32 + 1118770292985239888*x^36*y^28 + 80347448443237920*x^42*y^22 + 1118770292985239888*x^28*y^36 + 3601688791018080*x^18*y^46 + 2016*x^2*y^62 + 635376*x^60*y^4 + 74974368*x^58*y^6 + 74974368*x^6*y^58 + 635376*x^4*y^60 + 3284214703056*x^12*y^52 + 601557853127198688*x^38*y^26 + 1620288010530347424*x^34*y^30 + 151473214816*x^10*y^54 + 250649105469666120*x^24*y^40 + 3284214703056*x^52*y^12 + 47855699958816*x^50*y^14 + 488526937079580*x^48*y^16 + 250649105469666120*x^40*y^24 + x^64 + 151473214816*x^54*y^10 + 4426165368*x^56*y^8 + 2016*x^62*y^2
MAPLE
seq(binomial(64, 2*n), n=0..32); # Georg Fischer, Jul 01 2021
MATHEMATICA
RecurrenceTable[{(2*n^2-n)*a[n]==(2*n^2-131*n+2145)*a[n-1], a[0]==1}, a[n], {n, 0, 33}] (* Georg Fischer, Jul 01 2021 *)
CROSSREFS
Cf. A110829 (RM(2,3)), A110839 (RM(3,4)), A110847 (RM(4,5)), A110852 (32nd root).
Sequence in context: A166818 A166800 A223216 * A282331 A183768 A119517
KEYWORD
nonn,fini,full
AUTHOR
STATUS
approved